回転の相互変換
一覧
オイラー角 → 回転行列 | EulerToMatrix |
- EulerToMatrix
-
-
入力
eulerAngle LREAL[3] オイラー角 order keisan\eEulerOrder 回転順
出力mat LREAL[3,3] 回転行列 - 【 例 】
-
入力 eulerAngle [20, 30, 45] order XYZ 出力 mat \begin{bmatrix} 0.612& -0.612& 0.5 \\ 0.785& 0.544& -0.296 \\ -0.09& 0.574& 0.814 \end{bmatrix} - 【 order 列挙体 】
-
\\keisan\eEulerOrder#
XYZ XZY YXZ YZX ZXY ZYX - 【 計算式 】
-
回転順 XYZ
\begin{align}
&R_{xyz}=R_xR_yR_z \\
&=
\begin{bmatrix}
cos\theta_y cos\theta_z & -cos\theta_y sin\theta_z & sin\theta_y \\
sin\theta_x sin\theta_y cos\theta_z+cos\theta_x sin\theta_z & -sin\theta_x sin\theta_y sin\theta_z+cos\theta_xcos\theta_z & -sin\theta_x cos\theta_y \\
-cos\theta_x sin\theta_y cos\theta_z+sin\theta_x sin\theta_z & cos\theta_x sin\theta_y sin\theta_z+sin\theta_x cos\theta_z & cos\theta_x cos\theta_y
\end{bmatrix}
\end{align}
回転順 XZY \begin{align} &R_{xzy}=R_xR_zR_y \\ &= \begin{bmatrix} cos\theta_y cos\theta_z & -sin\theta_z & sin\theta_y cos\theta_z \\ cos\theta_x cos\theta_y sin\theta_z+sin\theta_x sin\theta_y & cos\theta_x cos\theta_z & cos\theta_x sin\theta_y sin\theta_z-sin\theta_x cos\theta_y \\ sin\theta_x cos\theta_y sin\theta_z-cos\theta_x sin\theta_y & sin\theta_x cos\theta_z & sin\theta_x sin\theta_y sin\theta_z+cos\theta_x cos\theta_y \end{bmatrix} \end{align}
回転順 YXZ \begin{align} &R_{yxz}=R_yR_xR_z \\ &= \begin{bmatrix} sin\theta_x sin\theta_y sin\theta_z+cos\theta_y cos\theta_z & sin\theta_x sin\theta_y sin\theta_z-cos\theta_y sin\theta_z & cos\theta_x sin\theta_y \\ cos\theta_x sin\theta_z & cos\theta_x cos\theta_z & -sin\theta_z \\ sin\theta_x cos\theta_y sin\theta_z-sin\theta_y cos\theta_z & sin\theta_x cos\theta_y cos\theta_z+sin\theta_y sin\theta_z & cos\theta_x cos\theta_y \end{bmatrix} \end{align}
回転順 YZX \begin{align} &R_{yzx}=R_yR_zR_x \\ &= \begin{bmatrix} cos\theta_y cos\theta_z & -cos\theta_x cos\theta_y sin\theta_z+sin\theta_x sin\theta_y & sin\theta_x cos\theta_y sin\theta_z+cos\theta_x sin\theta_y \\ sin\theta_x & cos\theta_x cos\theta_z & -sin\theta_x cos\theta_z \\ -sin\theta_y cos\theta_z & cos\theta_x sin\theta_y sin\theta_z+sin\theta_x cos\theta_y & -sin\theta_x sin\theta_y sin\theta_z+cos\theta_x cos\theta_y \end{bmatrix} \end{align}
回転順 ZXY \begin{align} &R_{zxy}=R_zR_xR_y \\ &= \begin{bmatrix} -sin\theta_x sin\theta_y sin\theta_z+cos\theta_y cos\theta_z & -cos\theta_x sin\theta_z+ & sin\theta_x cos\theta_y sin\theta_z+sin\theta_y cos\theta_z \\ sin\theta_x sin\theta_y cos\theta_z+cos\theta_y sin\theta_z & cos\theta_x cos\theta_z & -sin\theta_x cos\theta_y cos\theta_z+sin\theta_y sin\theta_z \\ -cos\theta_x sin\theta_y & sin\theta_x & cos\theta_x cos\theta_y \end{bmatrix} \end{align}
回転順 ZYX \begin{align} &R_{zyx}=R_zR_yR_x \\ &= \begin{bmatrix} cos\theta_y cos\theta_z & sin\theta_x sin\theta_y cos\theta_z-cos\theta_x sin\theta_z & cos\theta_x sin\theta_y cos\theta_z+sin\theta_x sin\theta_z \\ cos\theta_y sin\theta_z & sin\theta_x sin\theta_y sin\theta_z+cos\theta_x cos\theta_z & cos\theta_x sin\theta_y sin\theta_z+sin\theta_x cos\theta_z \\ -sin\theta_y & sin\theta_x cos\theta_y & cos\theta_x cos\theta_y \end{bmatrix} \end{align}
回転行列 → オイラー角 | MatrixToEuler |
- MatrixToEuler
-
-
入力
mat LREAL[3,3] 回転行列 order keisan\eEulerOrder 回転順
出力eulerAngle LREAL[3] オイラー角 - 【 例 】
-
入力 mat \begin{bmatrix} 0.612& -0.612& 0.5 \\ 0.785& 0.544& -0.296 \\ -0.09& 0.574& 0.814 \end{bmatrix} order XYZ 出力 eulerAngle [20,30,45] - 【 order 列挙体 】
- こちらを参照
- 【 計算式 】
-
回転行列の各要素は以下のように表します
\[
\begin{bmatrix}
m_{00}& m_{01}& m_{02} \\
m_{10}& m_{11}& m_{12} \\
m_{20}& m_{21}& m_{22} \\
\end{bmatrix}
\]
回転順 XYZ \[\large \begin{align} \theta_x &= \begin{cases} \arctan \left( -\frac{m_{12}}{m_{22}} \right) &(\cos \theta_y \neq 0) \\ \arctan \left( \frac{m_{21}}{m_{11}} \right) &(otherwise) \end{cases} \\ \theta_y &= \arcsin (m_{02}) \\ \theta_z &= \begin{cases} \arctan \left( -\frac{m_{01}}{m_{00}} \right) &(\cos \theta_y \neq 0) \\ 0 &(otherwise) \end{cases} \\ \end{align} \]
回転順 XZY \[\large \begin{align} \theta_x &= \begin{cases} \arctan \left( \frac{m_{21}}{m_{11}} \right) &(\cos \theta_z \neq 0) \\ \arctan \left( -\frac{m_{12}}{m_{22}} \right) &(otherwise) \end{cases} \\ \theta_y &= \begin{cases} \arctan \left( \frac{m_{02}}{m_{00}} \right) &(\cos \theta_z \neq 0) \\ 0 &(otherwise) \end{cases} \\ \theta_z &= \arcsin (-m_{01}) \\ \end{align} \]
回転順 YXZ \[\large \begin{align} \theta_x &= \arcsin (-m_{12}) \\ \theta_y &= \begin{cases} \arctan \left( \frac{m_{02}}{m_{22}} \right) &(\cos \theta_x \neq 0) \\ \arctan \left( -\frac{m_{20}}{m_{00}} \right) &(otherwise) \end{cases} \\ \theta_z &= \begin{cases} \arctan \left( \frac{m_{10}}{m_{11}} \right) &(\cos \theta_x \neq 0) \\ 0 &(otherwise) \end{cases} \\ \end{align} \]
回転順 YZX \[\large \begin{align} \theta_x &= \begin{cases} \arctan \left( -\frac{m_{12}}{m_{11}} \right) &(\cos \theta_z \neq 0) \\ 0 &(otherwise) \end{cases} \\ \theta_y &= \begin{cases} \arctan \left( -\frac{m_{20}}{m_{00}} \right) &(\cos \theta_z \neq 0) \\ \arctan \left( \frac{m_{02}}{m_{22}} \right) &(otherwise) \\ \end{cases} \\ \theta_z &= \arcsin (m_{10}) \\ \end{align} \]
回転順 ZXY \[\large \begin{align} \theta_x &= \arcsin (m_{21}) \\ \theta_y &= \begin{cases} \arctan \left( -\frac{m_{20}}{m_{22}} \right) &(\cos \theta_x \neq 0) \\ 0 &(otherwise) \end{cases} \\ \theta_z &= \begin{cases} \arctan \left( -\frac{m_{01}}{m_{11}} \right) &(\cos \theta_x \neq 0) \\ \arctan \left( \frac{m_{10}}{m_{00}} \right) &(otherwise) \\ \end{cases} \\ \end{align} \]
回転順 ZYX \[\large \begin{align} \theta_x &= \begin{cases} \arctan \left( \frac{m_{21}}{m_{22}} \right) &(\cos \theta_y \neq 0) \\ 0 &(otherwise) \end{cases} \\ \theta_y &= \arcsin (-m_{20}) \\ \theta_z &= \begin{cases} \arctan \left( \frac{m_{10}}{m_{00}} \right) &(\cos \theta_y \neq 0) \\ \arctan \left( -\frac{m_{01}}{m_{11}} \right) &(otherwise) \\ \end{cases} \\ \end{align} \]
オイラー角 → クォータニオン | EulerToQuaternion |
- EulerToQuaternion
-
-
入力
eulerAngle LREAL[3] オイラー角 order keisan\eEulerOrder 回転順
出力q keisan\sQuaternion クォータニオン - 【 例 】
-
入力 eulerAngle [20,30,45] order XYZ 出力 q \begin{bmatrix} 0.862 \\ 0.253 \\ 0.171 \\ 0.406 \\ \end{bmatrix} - 【 order 列挙体 】
- こちらを参照
- 【 計算式 】
-
クォータニオンは以下のように表します
\[
q =
\begin{bmatrix}
q_w \\
q_x \\
q_y \\
q_z \\
\end{bmatrix}
\]
回転順 XYZ \[\large \begin{bmatrix} -\sin \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ \cos \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \sin \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ -\sin \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ \cos \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \sin \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ \end{bmatrix} \]
回転順 XZY \[\large \begin{bmatrix} \sin \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ -\cos \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \sin \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ \cos \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\cos \frac{\theta_z}{2} - \sin \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\sin \frac{\theta_z}{2} \\ \sin \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\cos \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\sin \frac{\theta_z}{2} \\ \end{bmatrix} \]
回転順 YXZ \[\large \begin{bmatrix} \sin \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ \cos \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \sin \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ -\sin \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ \cos \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\sin \frac{\theta_z}{2} - \sin \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ \end{bmatrix} \]
回転順 YZX \[\large \begin{bmatrix} -\sin \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ \sin \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\cos \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\sin \frac{\theta_z}{2} \\ \sin \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ -\sin \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\cos \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\sin \frac{\theta_z}{2} \\ \end{bmatrix} \]
回転順 ZXY \[\large \begin{bmatrix} -\sin \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ -\cos \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \sin \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ \cos \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\cos \frac{\theta_z}{2} + \sin \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\sin \frac{\theta_z}{2} \\ \sin \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\cos \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\sin \frac{\theta_z}{2} \\ \end{bmatrix} \]
回転順 ZYX \[\large \begin{bmatrix} \sin \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ \sin \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\cos \frac{\theta_z}{2} - \cos \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\sin \frac{\theta_z}{2} \\ \sin \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\sin \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\cos \frac{\theta_z}{2} \\ -\sin \frac{\theta_x}{2}\sin \frac{\theta_y}{2}\cos \frac{\theta_z}{2} + \cos \frac{\theta_x}{2}\cos \frac{\theta_y}{2}\sin \frac{\theta_z}{2} \\ \end{bmatrix} \]
クォータニオン → オイラー角 | QuaternionToEuler |
- QuaternionToEuler
-
-
入力
q keisan\sQuaternion クォータニオン order keisan\eEulerOrder 回転順
出力eulerAngle LREAL[3] オイラー角 - 【 例 】
-
入力 q \begin{bmatrix} 0.862 \\ 0.253 \\ 0.171 \\ 0.406 \\ \end{bmatrix} order XYZ 出力 eulerAngle [20,30,45] (20度,30度,45度) - 【 order 列挙体 】
- こちらを参照
- 【 計算式 】
-
クォータニオンは以下のように表します
\[
q =
\begin{bmatrix}
q_w \\
q_x \\
q_y \\
q_z \\
\end{bmatrix}
\]
回転順 XYZ \[\large \begin{align} \theta_x &= \begin{cases} \arctan \left( -\frac{2q_yq_z-2q_xq_w}{2q_w^2+2q_z^2-1} \right) &(\cos \theta_y \neq 0) \\ \arctan \left( \frac{2q_yq_z+2q_xq_w}{2q_w^2+2q_y^2-1} \right) &(otherwise) \end{cases} \\ \theta_y &= \arcsin (2q_xq_z+2q_yq_w) \\ \theta_z &= \begin{cases} \arctan \left( -\frac{2q_xq_y-2q_zq_w}{2q_w^2+2q_x^2-1} \right) &(\cos \theta_y \neq 0) \\ 0 &(otherwise) \end{cases} \\ \end{align} \]
回転順 XZY \[\large \begin{align} \theta_x &= \begin{cases} \arctan \left( \frac{2q_yq_z+2q_xq_w}{2q_w^2+2q_y^2-1} \right) &(\cos \theta_z \neq 0) \\ \arctan \left( -\frac{2q_yq_z-2q_xq_w}{2q_w^2+2q_z^2-1} \right) &(otherwise) \\ \end{cases} \\ \theta_y &= \begin{cases} \arctan \left( \frac{2q_xq_z+2q_yq_w}{2q_w^2+2q_x^2-1} \right) &(\cos \theta_z \neq 0) \\ 0 &(otherwise) \end{cases} \\ \theta_z &= \arcsin (-(2q_xq_y-2q_zq_w)) \\ \end{align} \]
回転順 YXZ \[\large \begin{align} \theta_x &= \arcsin (-(2q_yq_z-2q_xq_w)) \\ \theta_y &= \begin{cases} \arctan \left( \frac{2q_xq_z+2q_yq_w}{2q_w^2+2q_z^2-1} \right) &(\cos \theta_x \neq 0) \\ \arctan \left( -\frac{2q_xq_z-2q_yq_w}{2q_w^2+2q_z^2-1} \right) &(otherwise) \\ \end{cases} \\ \theta_z &= \begin{cases} \arctan \left( \frac{2q_xq_y+2q_zq_w}{2q_w^2+2q_y^2-1} \right) &(\cos \theta_x \neq 0) \\ 0 &(otherwise) \end{cases} \\ \end{align} \]
回転順 YZX \[\large \begin{align} \theta_x &= \begin{cases} \arctan \left( -\frac{2q_yq_z-2q_xq_w}{2q_w^2+2q_y^2-1} \right) &(\cos \theta_z \neq 0) \\ 0 &(otherwise) \end{cases} \\ \theta_y &= \begin{cases} \arctan \left( -\frac{2q_xq_z-2q_yq_w}{2q_w^2+2q_x^2-1} \right) &(\cos \theta_z \neq 0) \\ \arctan \left( \frac{2q_xq_z+2q_yq_w}{2q_w^2+2q_z^2-1} \right) &(otherwise) \\ \end{cases} \\ \theta_z &= \arcsin (-(2q_xq_y+2q_zq_w)) \\ \end{align} \]
回転順 ZXY \[\large \begin{align} \theta_x &= \arcsin (2q_yq_+2q_xq_w) \\ \theta_y &= \begin{cases} \arctan \left( -\frac{2q_xq_z-2q_yq_w}{2q_w^2+2q_z^2-1} \right) &(\cos \theta_x \neq 0) \\ 0 &(otherwise) \end{cases} \\ \theta_z &= \begin{cases} \arctan \left( -\frac{2q_xq_y-2q_zq_w}{2q_w^2+2q_y^2-1} \right) &(\cos \theta_x \neq 0) \\ \arctan \left( \frac{2q_xq_y+2q_zq_w}{2q_w^2+2q_x^2-1} \right) &(otherwise) \\ \end{cases} \\ \end{align} \]
回転順 ZYX \[\large \begin{align} \theta_x &= \begin{cases} \arctan \left( \frac{2q_yq_z+2q_xq_w}{2q_w^2+2q_z^2-1} \right) &(\cos \theta_y \neq 0) \\ 0 &(otherwise) \end{cases} \\ \theta_y &= \arcsin (-(2q_xq_z-2q_yq_w)) \\ \theta_z &= \begin{cases} \arctan \left( \frac{2q_xq_y+2q_zq_w}{2q_w^2+2q_x^2-1} \right) &(\cos \theta_y \neq 0) \\ \arctan \left( -\frac{2q_xq_y-2q_zq_w}{2q_w^2+2q_y^2-1} \right) &(otherwise) \\ \end{cases} \\ \end{align} \]
クォータニオン → 回転行列 | QuaternionToMatrix |
- QuaternionToMatrix
-
-
入力
q keisan\sQuaternion クォータニオン
出力mat LREAL[3,3] 回転行列 - 【 例 】
-
入力 q \[ \begin{bmatrix} q_w \\ q_x \\ q_y \\ q_z \\ \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} \] 出力 mat \begin{bmatrix} 1& 0& 0& \\ 0& -1& 0 \\ 0& 0& -1 \end{bmatrix} - 【 計算式 】
- \[\large \begin{bmatrix} 2q_w^2+2q_x^2-1& 2q_xq_y-2q_zq_w& 2q_xq_z+2q_yq_w \\ 2q_xq_y+2q_zq_w& 2q_w^2+2q_y^2-1& 2q_yq_z-2q_xq_w \\ 2q_xq_z-2q_yq_w& 2q_yq_z+2q_xq_w& 2q_w^2+2q_z^2-1 \\ \end{bmatrix} \]
回転行列 → クォータニオン | MatrixToQuaternion |
- MatrixToQuaternion
-
-
入力
mat LREAL[3,3] 回転行列 conv UINT 変換候補 0-3
回転行列からクォータニオンへの変換には複数の変換候補があるるため安定して解が求まる候補を選択します
出力q keisan\sQuaternion クォータニオン
- 【 例 】
-
入力 mat \begin{bmatrix} 1& 0& 0& \\ 0& -1& 0 \\ 0& 0& -1 \end{bmatrix} conv 0 出力 q \[ \begin{bmatrix} q_w \\ q_x \\ q_y \\ q_z \\ \end{bmatrix} = \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \\ \end{bmatrix} \] - 【 計算式 】
- conv=0 \[\Large q= \begin{bmatrix} \frac{m_{21}-m_{12}}{2\sqrt{m_{00}-m_{11}-m_{22}+1}} \\ \frac{\sqrt{m_{00}-m_{11}-m_{22}+1}}{2} \\ \frac{m_{10}-m_{01}}{2\sqrt{m_{00}-m_{11}-m_{22}+1}} \\ \frac{m_{02}-m_{20}}{2\sqrt{m_{00}-m_{11}-m_{22}+1}} \\ \end{bmatrix} \] conv=1 \[\Large q= \begin{bmatrix} \frac{m_{02}-m_{20}}{2\sqrt{-m_{00}+m_{11}-m_{22}+1}} \\ \frac{m_{10}-m_{01}}{2\sqrt{-m_{00}+m_{11}-m_{22}+1}} \\ \frac{\sqrt{-m_{00}+m_{11}-m_{22}+1}}{2} \\ \frac{m_{21}-m_{12}}{2\sqrt{-m_{00}+m_{11}-m_{22}+1}} \\ \end{bmatrix} \] conv=2 \[\Large q= \begin{bmatrix} \frac{m_{10}-m_{01}}{2\sqrt{-m_{00}-m_{11}+m_{22}+1}} \\ \frac{m_{02}-m_{20}}{2\sqrt{-m_{00}-m_{11}+m_{22}+1}} \\ \frac{m_{21}-m_{12}}{2\sqrt{-m_{00}-m_{11}+m_{22}+1}} \\ \frac{\sqrt{-m_{00}-m_{11}+m_{22}+1}}{2} \\ \end{bmatrix} \] conv=3 \[\Large q= \begin{bmatrix} \frac{\sqrt{m_{00}+m_{11}+m_{22}+1}}{2} \\ \frac{m_{21}-m_{12}}{2\sqrt{m_{00}+m_{11}+m_{22}+1}} \\ \frac{m_{02}-m_{20}}{2\sqrt{m_{00}+m_{11}+m_{22}+1}} \\ \frac{m_{10}-m_{01}}{2\sqrt{m_{00}+m_{11}+m_{22}+1}} \\ \end{bmatrix} \]
参考URL
- Quita 回転行列、クォータニオン、オイラー角の相互変換 https://qiita.com/aa_debdeb/items/3d02e28fb9ebfa357eaf